AI Research Engineer - Reinforcement Learning (100% Remote)
Job Overview
Join Tether and Shape the Future of Digital Finance
At Tether, we’re not just building products, we’re pioneering a global financial revolution. Our cutting-edge solutions empower businesses—from exchanges and wallets to payment processors and ATMs—to seamlessly integrate reserve-backed tokens across blockchains. By harnessing the power of blockchain technology, Tether enables you to store, send, and receive digital tokens instantly, securely, and globally, all at a fraction of the cost. Transparency is the bedrock of everything we do, ensuring trust in every transaction.
Innovate with Tether
Tether Finance: Our innovative product suite features the world’s most trusted stablecoin, USDT, relied upon by hundreds of millions worldwide, alongside pioneering digital asset tokenization services.
But that’s just the beginning:
Tether Power: Driving sustainable growth, our energy solutions optimize excess power for Bitcoin mining using eco-friendly practices in state-of-the-art, geo-diverse facilities.
Tether Data: Fueling breakthroughs in AI and peer-to-peer technology, we reduce infrastructure costs and enhance global communications with cutting-edge solutions like KEET, our flagship app that redefines secure and private data sharing.
Tether Education: Democratizing access to top-tier digital learning, we empower individuals to thrive in the digital and gig economies, driving global growth and opportunity.
Tether Evolution: At the intersection of technology and human potential, we are pushing the boundaries of what is possible, crafting a future where innovation and human capabilities merge in powerful, unprecedented ways.
Why Join Us?
Our team is a global talent powerhouse, working remotely from every corner of the world. If you’re passionate about making a mark in the fintech space, this is your opportunity to collaborate with some of the brightest minds, pushing boundaries and setting new standards. We’ve grown fast, stayed lean, and secured our place as a leader in the industry.
If you have excellent English communication skills and are ready to contribute to the most innovative platform on the planet, Tether is the place for you.
Are you ready to be part of the future?
About the job
As a member of the AI model team, you will drive innovation in reinforcement learning approaches for advanced models. Your work will optimize decision-making and adaptive behavior to deliver enhanced intelligence, improved performance, and domain-specific capabilities for real-world challenges. You will work across a broad spectrum of systems, including resource-efficient models designed for limited hardware environments and complex multi-modal architectures that integrate data such as text, images, and audio.
We expect you to have deep expertise in designing reinforcement learning systems and a strong background in advanced model architectures. You will adopt a hands-on, research-driven approach to developing, testing, and implementing novel reinforcement learning algorithms and training frameworks. Your responsibilities include curating specialized simulation environments and training datasets, strengthening baseline policy performance, and identifying as well as resolving bottlenecks in the reinforcement learning process. The ultimate goal is to unlock superior, domain-adapted AI performance and push the limits of what these models can achieve in dynamic, real-world environments.
Responsibilities
Develop and implement state-of-the-art reinforcement learning algorithms designed to optimize decision-making processes in both simulated and real-world settings. Establish clear performance targets such as reward maximization and policy stability.
Build, run, and monitor controlled reinforcement learning experiments. Track key performance indicators while documenting iterative results and comparing outcomes against established benchmarks.
Identify and curate high-quality simulation environments and training datasets that are tailored to specific domain challenges. Set measurable criteria to ensure that the selection and preparation of these resources significantly enhance the learning process and overall model performance.
Systematically debug and optimize the reinforcement learning pipeline by analyzing both computational efficiency and learning performance metrics. Address issues such as reward signal noise, exploration strategy, and policy divergence to improve convergence and stability.
Collaborate with cross-functional teams to integrate reinforcement learning agents into production systems. Define clear success metrics such as real-world performance improvements and robustness under varied conditions and ensure continuous monitoring and iterative refinements for sustained domain adaptation.